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INTRODUCTION

mission success. Mountaineering training (provided
by sites such as the Northern Warfare Training Cen-
ter at Fort Greely, Alaska; the Marine Mountain
Warfare Training Center, Bridgeport, California; and
the Mountain Warfare Training Site, Jericho, Ver-
mont) is essential to fully appreciate the complex-
ity of the problems to be encountered in mountain
environments.

Initially, interest in the human capacity to do
physical work at altitude was primarily stimulated
by early mountaineering experiences.12,13 Although
mountain climbing is strenuous and can require
high levels of skill, the focus of a noncompetitive
climb is often related more to successfully complet-
ing mountaineering tasks and enjoying the scenery
than in climbing the greatest distance in the shortest
time. Conversely, military service members are de-
ployed to mountain areas on the basis of their units’
mission, and not for recreation or personal challenge.
Tactical operations dictate the timing, duration, and
location of the mission, often exposing service mem-
bers to terrain and environmental conditions that
would usually not be considered recreational.11

Occupational requirements for military opera-
tions, mining, aviation, and space science stimu-
lated research that focused on functional limita-
tions, adjustments, and processes of acclimatization
at altitudes greater than 3,000 m during rest and
low-to-moderate intensity activities.14,15 Even
though in the first half of the 20th century one third
of the world’s population lived above an altitude
of 2,000 m,16 few early physiological investigations
had been conducted in the low-to-moderate altitude
range between 2,000 and 3,000 m. [Other experts in
epidemiology use a different estimate—a number
considerably lower but still enormous—of the
world’s population living at high altitude: for ex-
ample, by the 1990s nearly 140 million people re-
sided above 2,500 m (8,000 ft).17,18—RFB, ed.] Not
until reports of subnormal athletic performances in
the longer-lasting events in the 1955 Pan American
Games and the 1962 World Pentathlon World Cham-
pionships in Mexico City (2,300 m), and the 1959
National Amateur Athletic Union at Boulder, Colo-
rado (1,630 m),19–21 did scientific investigations in-
clude the effects of hypoxic stress of more moder-
ate altitudes.

The choice of Mexico City in 1963 as the site for
the 19th Olympiad in 1968 stimulated much re-
search on the effects of altitude.22 International sym-
posia in Switzerland (1965), the United States (1966)

The study of physical performance has long been
of interest to the military. Scientific studies of mili-
tary members performing a variety of tasks were
among the earliest nonclinical investigations in the
area of applied physiological research.1,2 For ex-
ample, numerous reports have described the energy
cost of marching at various speeds with and with-
out loads under controlled conditions.1,3–8 It is well
accepted that external stresses such as increased
load carriage and rugged terrain features can lead
to decreases in functional capacities. Yet, despite the
considerable mechanization of the modern military,
service members still have the burdensome task of
carrying essential, often heavy equipment. In moun-
tainous regions, the load carried will almost cer-
tainly increase—owing to the additional weight of
protective clothing and technical equipment. Other
factors that have profound negative influence on
military operations in the mountains include steep,
rugged, and constantly changing terrain; unpredict-
able weather conditions; snow-covered ground; and
mountain sickness.9,10 Military physical perfor-
mance in the mountains may also be adversely af-
fected by sleep deprivation; increased physical or
emotional stress, or both; caloric and fluid restric-
tions; reduced visibility; equipment failures; inad-
equate communications; and lack of specialized
medical equipment.11

The hypoxia (ie, low inspired oxygen pressure)
associated with mountain (ie, actual) or altitude (ie,
experimental) exposures reduces sustained physi-
cal performance capabilities to a degree directly
proportional to the elevation, with the magnitude
of the reduction associated with initial exposure
usually greater than that associated with continued
exposure. Because of hypoxia-induced physical
performance decrements, military personnel rap-
idly transported from low to high terrestrial eleva-
tions should not be committed immediately to pa-
trolling operations, entrenchment, combat, or other
physically demanding duties, nor should they be
expected to perform as well as they did at sea level.9

Although it is generally accepted that more-fre-
quent rest breaks, increased time for task comple-
tion, and a reduction in the number of daily tasks
will be required for proper recovery and should be
included in operational planning, the combination
of all the above factors makes it difficult or impos-
sible to precisely predict the extent of the negative
impact on unit effectiveness that an operation will
encounter, or to provide exact guidelines to improve
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and Italy (1967) summarized findings from research
and competitive athletic sources and made recom-
mendations to the International Olympic Commit-
tee for the 1968 Olympics. Many,19,23–26 although not
all,27–30 reports from this period indicated that acute
altitude exposure impaired exercise performance,
while residing or training (or both) at altitude
greatly improved altitude maximal or submaximal
exercise performances. At this time, it also became
apparent that during altitude training and compe-
tition, the exercise performance of some but not all
athletes was adversely affected, for reasons not well
understood.24,26 Not surprisingly, coaches and repre-
sentatives of sea-level countries were concerned that

• residence and exercise training at altitude
would confer an unfair advantage over
those who resided and trained at sea level;

• it was not appropriate to conduct the Olym-
pic trials at lower altitudes to choose indi-
viduals for competitions at higher eleva-
tions; and

• the moderate elevation of Mexico City
would be deleterious to the health of elite
athletes coming from sea level.

Although previous competitions at moderate altitudes
had provided a general knowledge of what was to be
expected from a low-altitude athlete competing at a
higher altitude, much of the available information was
incomplete or contradictory. For example, recommen-
dations made to the International Olympic Commit-
tee for the length of time an endurance athlete should
train at altitude prior to competition ranged from less
than 48 hours16 to a minimum of 4 to 6 weeks.31 Reso-
lution of many of these issues was seen as having
important implications for potential military deploy-
ment and conflict at altitude.5

Since the 1968 Olympics, interest in the effects
of altitude residence and exercise training on physi-
cal performance at altitude or sea level for civilians
and military has not waned.32 Intensive study by
many research, sport, and military organizations
has provided some answers to questions regarding
the effects of altitude exposure on physical perfor-
mance. While there appears to be a consensus in
the scientific literature that endurance exercise
training at altitude improves exercise performance
at altitude,33 controversy still exists whether endur-
ance training or residence at altitude improves sub-
sequent endurance performance.34–37

PHYSICAL PERFORMANCE

The Effects of Altitude on Maximal Aerobic
Power

The ability to perform sustained aerobic mus-
cular exercise is assessed using the maximal rate
of oxygen uptake (V

•
O2max). This widely used

performance index is reproducible38,39 and gen-
erally accepted as the single best measure of the
functional limit of the respiratory and circulatory
systems to deliver oxygen to active muscles and
the ability of the active muscles to utilize the
oxygen delivered.40 Maximal aerobic power can
be affected by factors that alter any of the pro-
cesses involved in oxygen transport or utiliza-
tion. At altitude, a person is exposed to a pro-
gressive decrease in atmospheric pressure, with
resultant declines in inspired, alveolar, and arte-
rial oxygen pressures. As a consequence of the
progressive hypoxia associated with increasing
altitude, V

•
O2max declines at a rate inversely pro-

portional to the elevation.41

Figure 22-1 illustrates the relationship of the
measured percentage of decline in V

•
O2max with in-

creasing actual or simulated elevations (ie, hy-
pobaric chambers or breathing hypoxic gas). The

wide range of the mean percentage of decline in
V
•

O2max at nearly all altitudes reflects variability
owing to differences in experimental design and
procedures and physiological differences among
subjects (Exhibit 22-1).

The relative contributions of these sources of
variation to V

•
O2max decrement differences at a

given altitude have yet to be quantified. It is im-
portant to note that even under ideal experimental
conditions at sea level, owing to measurement error
and individual biological variation, 68% of the time
values of V

•
O2max for repeat tests can vary by as

much as ± 5.6%; and 98% of the time can vary by as
much as ± 11.2%.39

The mean data points in Figure 22-1 represent a
database derived from literature sources. The re-
gression line generated from these data provides a
visual reference. Systematically isolating and
grouping an adequate number of studies with simi-
lar experimental designs or subject characteristics
from within this database, and then comparing the
relative positions of the subgroupings to the entire
database, allows a qualitative assessment of the
relative importance of various factors in account-
ing for the total variation.
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Minimal Altitude for Decrement of, and the Rate
of Decline in, Maximal Aerobic Power

Figure 22-1 shows the minimal altitude at which
a decrease in V

•
O2max has been detected and the rate

at which it declines with increasing elevation. Three
regression lines have been drawn: one represent-
ing data of the current database and the other two
representing the more commonly cited relationships
in the scientific literature.42,43 The largest differences
between the three lines occur at the lowest and the
highest altitudes but the data points at all three lines
are at similar locations at the intermediate altitudes.
Buskirk and colleagues42 suggested that there is
minimal decrement in V

•
O2max until approximately

1,524 m, with an average linear decline of 3.2% for
every additional 305 m of altitude (dashed line).
When this relationship was first proposed in 1966,
the altitude at which V

•
O2max began to decline and

whether the V
•

O2max decline remained linear at the

higher altitudes were not apparent, because there
was a paucity of data at altitudes less than 2,500 m
and greater than 6,000 m. In more recent years,
V
•

O2max has been determined in subjects of vary-
ing fitness levels at lower44–59 and higher60,61 alti-
tudes. Using information from some of these stud-
ies,57,61 Grover, Weil, and Reeves43 suggested in 1986
that the decline in V

•
O2max begins at about 700 m,

with a linear reduction of 8% for every additional
1,000 m of altitude up to approximately 6,300 m. In
support of their contention, Jackson and Sharkey34

reported in 1988 that athletes who reside at sea level
and train at the Olympic Training Center in Colo-
rado Springs, Colorado (altitude 1,881 m), exhibit
a loss in V

•
O2max of approximately 1% for every 305

m of ascent above sea level (this line is not shown
in Figure 22-1). Consistent with these reports,34,43

Gore and colleagues62 reported in 1996 that at 580
m, V

•
O2max declines 3.6% in fit, untrained individu-

als (statistically not significant) and 7% in elite ath-

Fig. 22-1. Maximum oxygen consumption (V
•

O2max) de-
creases with increasing elevation. Each of the 146 points
(unfilled circles) on the graph represents a mean value
derived from 65 different civilian and military investi-
gations* conducted at altitudes from 580 m1 to 8,848 m.2,3

Multiple mean data points for a study were included if
the study entailed more than one of the following: (1)
elevation, (2) group of test subjects, or (3) exposure du-
ration. For studies using hypoxic gas mixtures, inspired
oxygen values were converted to altitude equivalents.
Mean values are reported because they were the only
values common to all investigations. A database regres-
sion line (thick curvilinear line) was drawn using the 146
points. Because each of these data points is a mean value
of many intrainvestigation individual determinations of
V
•

O2max, the regression line represents possibly thou-
sands of V

•
O2max test values and therefore provides a

truer approximation for the expected average decrement
at each elevation. Also included are the regression lines
of Buskirk and colleagues4 (dashed line) and Grover and
colleagues5 (dotted line), which represent two of the
most-often-quoted relationships of the decrement in
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•

O2max to an increase in elevation. Reproduced with permission from Fulco CS, Rock PB, Cymerman A. Maximal
and submaximal exercise performance at altitude. Aviat Space Environ Med. 1998;67(8):794.
Sources for the figure legend: (1) Gore CJ, Hahn AG, Scroop GS, et al. Increased arterial desaturation in trained
cyclists during maximal exercise at 580 m altitude. J Appl Physiol. 1996;80:2204–2210. (2) Cymerman A, Reeves JT,
Sutton JR, et al. Operation Everest II: Maximal oxygen uptake at extreme altitude. J Appl Physiol. 1989;66(5):2446–
2453. (3) West JB, Boyer SJ, Graber DJ, et al. Maximal exercise at extreme altitudes on Mount Everest. J Appl Physiol.
1983;55:688–698. (4) Buskirk ER, Kollias J, Picon-Reategui E, Akers R, Prokop E, Baker P. Physiology and performance
of track athletes at various altitudes in the United States and Peru. In: Goddard RF, ed. The Effects of Altitude on
Physical Performance. Albuquerque, NM: The Athletic Institute; 1967: 65–72. (5) Grover RF, Weil JV, Reeves JT. Cardio-
vascular adaptation to exercise at high altitude. In: Pandolf KB, ed. Exercise and Sport Science Reviews. 14th ed. New
York, NY: Macmillian; 1986: 269–302.
*Sources for the data points are contained in the Attachment at the end of this chapter.
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letes. Even acknowledging the problems with ac-
curacy and sensitivity of V

•
O2max measurement

techniques,39 these and other data presented in Fig-
ure 22-1 suggest that small declines in V

•
O2max be-

gin at a much lower altitude than had been previ-
ously assumed by Buskirk and colleagues42 and by
Grover, Weil, and Reeves.43 In addition, it would

appear from Figure 22-1 that there is a more rapid,
nonlinear decline in V

•
O2max at altitudes in excess

of approximately 6,300 m. This more rapid decline
may be linked with reduced blood flow, reduction
of muscle mass, or metabolic deterioration, condi-
tions that in any combination are often associated
with chronic hypoxic exposure.60,63–66

EXHIBIT 22-1

POTENTIAL SOURCES OF VARIATION OF THE MEAN PERCENTAGE OF DECLINE IN
V
•

O2MAX IN COMPETITION AT ALTITUDE

• Subjects’ fitness levels

• Residence at altitude prior to a study

• Subjects’ gender

• Changes in conditioning level resulting from increased activity during the exposure

• Subjects’ smoking status

• Subjects’ motivation

• Subjects’ age

• Hypoxic ventilatory response

• Altitude sickness (acute mountain sickness, high-altitude pulmonary edema, and high-altitude cere-
bral edema)

• Sample size

• Rate of ascent to altitude

• Duration of exposure (eg, acute vs chronic)

• Timing of V
•

O2max measurements (eg, preacclimitazation and postacclimatization)

• Differences between training and exercise testing modes

• Use of inappropriate exercise mode (eg, elite runners tested with bicycle ergometers)

• Altitude-induced muscle wasting

Sources: (1) Dill DB, Adams WC. Maximal oxygen uptake at sea level and at 3,090-m altitude in high school champion
runners. J Appl Physiol. 1971;30:854–859. (2) Faulkner JA, Kollias J, Favour CB, Buskirk ER, Balke B. Maximum aerobic
capacity and running performance at altitude. J Appl Physiol. 1968;24:685–691. (3) Hansen JE, Vogel JA, Stelter GP, Consolazio
CF. Oxygen uptake in man during exhaustive work at sea level and high altitude. J Appl Physiol. 1967;23:511–522. (4) Jackson
CG, Sharkey BJ. Altitude, training and human performance. Sports Med. 1988;6:279–284. (5) Kollias J, Buskirk ER. Exercise
and altitude. In: Johnson WR; Buskirk ER, eds. Science and Medicine of Exercise and Sport. 2nd ed. New York: Harper and
Row; 1974: 211–227. (6) Howley ET, Bassett DR Jr, Welch HG. Criteria for maximal oxygen uptake: Review and commentary.
Med Sci Sports Exerc. 1995;27:1292–1301. (7) Berglund B. High-altitude training: Aspects of haematological adaptation. Sports
Med. 1992;14:289–303. (8) Boutellier U, Marconi C, Di Prampero PE, Cerretelli P. Effects of chronic hypoxia on maximal
performance. Bull Europ Physiopath Resp. 1982;18:39–44. (9) Buskirk ER, Kollias J, Picon-Reategui E, Akers R, Prokop E,
Baker P. Physiology and performance of track athletes at various altitudes in the United States and Peru. In: Goddard RF,
ed. The Effects of Altitude on Physical Performance. Albuquerque, NM: The Athletic Institute; 1967: 65–72. (10) Dill DB, Hillyard
SD, Miller J. Vital capacity, exercise performance, and blood gases at altitude as related to age. J Appl Physiol. 1980;48:6–9.
(11) Dill DB, Robinson S, Balke B, Newton JL. Work tolerance: Age and altitude. J Appl Physiol. 1964;19:483–488. (12) Lawler
J, Powers SK, Thompson D. Linear relationship between V

•
O2max and V

•
O2max decrement during exposure to acute altitude.

J Appl Physiol. 1988;64:1486–1492. (13) Schoene RB, Lahiri S, Hackett PH, et al. Relationship of hypoxic ventilatory response
to exercise performance on Mount Everest. J Appl Physiol. 1984;56:1478–1483. (14) Shephard RJ, Bouhlel E, Vandewalle H,
Monod H. Peak oxygen uptake and hypoxia. Int J Sports Med. 1988;9:279–283. (15) Terrados N, Melichna J, Sylven C, Jansson
E, Kaijser L. Effects of training at simulated altitude on performance and muscle metabolic capacity in competitive road
cyclists. Eur J Appl Physiol Med. 1988;57:203–209. (16) Young AJ, Cymerman A, Burse RL. The influence of cardiorespiratory
fitness on the decrement in maximal aerobic power at high altitude. Eur J Appl Physiol Med. 1985;54:12–15.
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Fitness Level and Maximal Aerobic Power
Variability

The subgroupings in Figure 22-2 to Figure 22-5,
separate discussions of which follow, were limited
to the factors of fitness level, prealtitude exposure
elevation, gender, and altitude duration, respec-
tively. Other factors such as age or smoking status
could not likewise be assessed because of a paucity
of published reports at altitude on such topics. The
intent is not to present a broad statistical relation-

ship but rather to provide an appreciation and per-
spective of the wide range of factors that modify
the decrement in V

•
O2max that occurs with altitude

exposure.
Figure 22-2 indicates that highly fit (≥ 63 mL/

kg/min) individuals (represented in the graph by
closed circles) generally have a larger decrement in
V
•

O2max at altitude than less fit (≤ 51 mL/kg/min)
individuals (open circles). Although the data pre-
sented were dichotomized to compare widely dif-
fering fitness levels, the amount of decline in
V
•

O2max at a given altitude is inversely related to
the degree of fitness, but within a much narrower
range than is apparent in Figure 22-2, and seems to
exist on a continuum.67–69 For example, Young,
Cymerman, and Burse68 compiled data from several
studies that used a relatively homogeneous group
of subjects (51 young, male soldiers) whose values
for sea-level V

•
O2max were normally distributed

from 36 to 60 mL/kg/min. In those studies, the
V
•

O2max decrement at 4,300 m altitude was greater
for the more highly fit subjects (V

•
O2max decrement

= V
•

O2max decrement = 0.52 – 11.39 • V
•

O2max [sea
level], r = 0.56, P < .05). At extreme altitudes (> 7,000
m), however, there is some evidence suggesting that
the difference in V

•
O2max decrement owing to fit-

ness levels diminishes.60 Nevertheless, the collec-
tive results indicate that much of the variability in
V
•

O2max decrement at altitudes up to at least 5,500
m is closely associated with prealtitude exposure
fitness levels. Of the studies used to prepare Figure
22-2 that directly compared high with moderate-to-
low fitness levels,49,58,67,70 the greater V

•
O2max decre-

ment in the more-fit subjects was associated with
pulmonary gas–exchange limitations, evidenced by
lower arterial blood saturations that were exacer-
bated during hypoxic exercise (see Chapter 21,
Human Adaptation to High Terrestrial Altitude).

Prealtitude Exposure Elevation and Maximal
Aerobic Power Variability

Figure 22-3 demonstrates that the regression lines
of the prealtitude exposure elevation—the elevation
where experimental, prealtitude exposure baseline
data were collected—lower than 100 m do not dif-
fer meaningfully from the database regression line.
However, mean values for prealtitude exposure el-
evations higher than 400 m tend to fall above the
low baseline altitude and the database regression
lines, especially in the range of 2,200 m to 4,300 m
altitude. Therefore, the potential V

•
O2max decrement

measured at any altitude would be lessened if ex-
perimental, prealtitude exposure baseline data are

Fig. 22-2. The effect of fitness level on the variability of
the decrement of V

•
O2max is depicted in studies of highly

conditioned (baseline altitude V
•

O2max was ≥ 63 mL/kg/
min, closed circles)* and less-well-conditioned (V

•
O2max

was ≤ 51mL/kg/min, open circles)† individuals. Only
mean data points based on objective fitness criteria (ie,
V
•

O2max normalized to body weight and measured at the
preexposure, resident altitude) are included.  Studies that
used only descriptive terms such as  “highly fit,” “well-
conditioned,” or “trained” to characterize subjects were
not included. To minimize possible confounding effects
of altitude acclimatization and/or physical conditioning
changes due to training while at altitude, data collected
beyond the first 3 days of altitude exposure were also
excluded. Regression lines for the highly conditioned
(dotted line) and less-well-conditioned (dashed line) in-
dividuals, as well as the database regression line (solid
line), which is redrawn from Figure 22-1 but truncated
at 5,500 m altitude, are included. Reproduced with per-
mission from Fulco CS, Rock PB, Cymerman A. Maximal
and submaximal exercise performance at altitude. Aviat
Space Environ Med. 1998;67(8):794.
Sources for the data points for highly conditioned* and
less-well-conditioned† individuals are found in the At-
tachment at the end of this chapter.
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collected at elevations of 400 m or higher. These data
indicate that some of the interstudy variability ob-
served in V

•
O2max decrements at a given higher al-

titude is likely due to differences in the elevation
where the prealtitude exposure baseline values
were obtained.

Gender and Maximal Aerobic Power Variability

Data presented in Figure 22-4 suggest there is no
difference between men and women in the percent-
age of V

•
O2max decrement at altitude; both genders

had similar decrements compared with the database
regression line of Figure 22-1. In addition, the only
reported altitude study controlling for menstrual cycle
phase71 indicated that the V

•
O2max decline from sea

level to 4,300 m was not significantly different be-
tween early follicular and midluteal cycle phases
or different from the database regression line, indi-
cating little, if any, effect of cycle menstrual cycle
phase.

Altitude Exposure Duration and Maximal Aerobic
Power Variability

In Figure 22-5, data from chronic (> 10 d) alti-
tude studies or exercise training studies and acute
(< 2 h) hypoxic-exposure studies were compared,
in an effort to provide a means to assess increases
in variation due to changes in physical condition-
ing at altitude, altitude acclimatization, or both. The
mean decline in the acute altitude-exposure stud-
ies lies within two standard deviations of the re-
gression line of the database (see Figure 22-1), while

Fig. 22-3. The effects of a difference in prealtitude expo-
sure elevations on V

•
O2max decrement variability are shown

from two subgroupings of studies: those whose baseline
resident altitudes were lower than 100 m (open circles)*
and those whose baseline resident altitudes were higher
than 400 m (closed circles).† Regression lines were cal-
culated for the lower baseline-resident elevations (dashed
line) and higher baseline-resident elevations (dotted line)
and compared with the database regression line (solid
line), which is redrawn from Figure 22-1 but truncated
at 5,500 m altitude. To minimize possible confounding
effects of changes due to altitude acclimatization and/or
physical conditioning while residing at the experimen-
tal altitude, only data collected within the first 3 days of
hypobaric hypoxia or during hypoxic gas breathing were
included. Reproduced with permission from Fulco CS,
Rock PB, Cymerman A. Maximal and submaximal exer-
cise performance at altitude. Aviat Space Environ Med.
1998;67(8):795.
Sources for the data points for baseline resident altitudes
< 100 m* and > 400 m† are found in the Attachment at
the end of this chapter.
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Fig. 22-4. Gender comparison of the V
•

O2max decrement
at altitude. Data were derived from seven studies* in
which V

•
O2max decline was reported for women (closed

circles) during altitude exposure or during hypoxic gas
mixture breathing. Also included are the mean results
for men (open circles) from the four of these studies† in
which direct gender comparisons were made. Data are
plotted against the database regression line of Figure 22-1,
truncated at 5,500 m. For all seven studies, V

•
O2max was

measured within an hour of altitude exposure or hypoxic
gas mixture breathing. Reproduced with permission from
Fulco CS, Rock PB, Cymerman A. Maximal and submax-
imal exercise performance at altitude. Aviat Space Environ
Med. 1998;67(8):796.
Sources for the data points for women* and men† dur-
ing altitude exposure or breathing hypoxic gas mixtures
are found in the Attachment at the end of this chapter.
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the mean decline of some of the chronic altitude-
exposure studies falls within, and some outside, this
range. The studies showing the least decline in
mean V

•
O2max during chronic exposures to altitudes

of 5,200 m or lower were composed of subjects who
were neither endurance athletes nor highly condi-
tioned. It is likely that the subjects in these studies
improved their fitness level while at altitude.19,25,63

The variability of the mean decrements in
V
•

O2max for exercise training studies involving
chronic exposures and using highly conditioned
subjects (V

•
O2max was > 63 mL/kg/min)24,27,28,45,72

was indistinguishable from that of the acute alti-
tude-exposure studies (ie, the subjects maintained
their fitness levels). Three other studies60,66,73 of
chronic altitude exposure had mean V

•
O2max de-

clines at or below the lower standard deviation
range line. Two were nonexercise training stud-
ies60,66 in which subjects became detrained owing
to reduced activity levels at altitude; in one,60 a re-

duced muscle mass was documented,65 which may
have reduced maximal exercise capabilities. The
third study comprised members of a trekking ex-
pedition,73 whose relatively poor performance dur-
ing maximal testing likely also resulted from fac-
tors such as a reduced muscle mass.

The data presented in Figure 22-5 suggest that if
the level of physical condition is not altered sig-
nificantly by increases in activity or exercise train-
ing or by physical deterioration, the magnitude of
decline in V

•
O2max and the amount of variability at

each altitude stays relatively constant during
chronic compared with acute altitude exposure. In
addition, the data from studies in which daily
physical activity was light to moderate (and thus
did not provide a sufficient training stimulus that
resulted in a V

•
O2max increase) do not support the

concept that simply residing at altitude improves
oxygen transport to an extent that improves
V
•

O2max.

Submaximal Exercise Performance

Oxygen uptake, or the “metabolic cost” for a par-
ticular exercise activity performed at a specified
rate (ie, power output), is similar at sea level and
altitude.74–76 But because V

•
O2max progressively de-

clines with increasing elevation, a fixed power out-
put represents a progressively greater relative exer-
cise intensity (ie, a higher percentage of V

•
O2max)

as the elevation increases. The practical implication
is that it is more difficult to perform submaximal
exercise (or work) at a fixed power output at alti-
tude than at sea level. The impairment will be most
conspicuous in those activities in which a given
distance must be traversed in the least amount of
time (eg, a 5-km competitive race), or which involve
sustained, arduous exercise that utilizes many
muscle groups.4,10,21,22,77,78 However, it is difficult to
predict accurately both (a) the magnitude of an
individual’s submaximal exercise impairment from
the V

•
O2max decrement at altitude, and (b) an

individual’s likely success in exercise events or
work activities relative to a similar group of indi-
viduals at altitude.19,79,80

One reason submaximal exercise performance dec-
rements are hard to predict from the decline in
V
•

O2max is that V
•

O2max measures only the maximal
aerobic contribution, whereas exercise episodes of
various intensities and durations involve differing
proportions of aerobic and anaerobic processes.26,40

A 400-m, 50-second lap for champion runners at sea
level, for example, might require approximately
20% aerobic and 80% anaerobic processes; for a

Fig. 22-5. Athletic training, trekking expeditions, and al-
titude acclimatization all affect the variability of V

•
O2max

decrement. The studies illustrated represent mean declines
in V

•
O2max during acute hypobaric hypoxia or hypoxic

gas breathing (< 2 h, open circles),* altitude acclimatiza-
tion (± 10 days, closed circles),† long-term altitude train-
ing,‡ and trekking§ (closed triangles). Also shown are the
database regression line (——) and ± 2 SD lines (. . .). Re-
produced with permission from Fulco CS, Rock PB,
Cymerman A. Maximal and submaximal exercise perfor-
mance at altitude. Aviat Space Environ Med. 1998;67(8):796.
*Sources for the data points for acute hypobaric hypoxia
or hypoxic gas breathing,* altitude acclimatization,†

long-term altitude training,‡ and trekking§ are found in
the Attachment at the end of this chapter.
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1,500 m, 4-minute run, the proportion may be 60%
to 40%; and for a 5-km, 14-minute run, 90% to
10%.26,40 Moreover, at altitude, compared with at sea
level, there is a reduction in the rate of reaching
steady-state oxygen uptake74,81 that effectively in-
creases the anaerobic component for all distances,
and further decreases the accuracy of predicting
some submaximal exercise performance impairments.
In addition, unlike the objectivity of the V

•
O2max

“plateau” that indicates high motivation and assures
maximal short-term effort,38 there are no similar cri-
teria for assuring submaximal exercise performance.
Therefore, submaximal exercise performance differ-
ences due to changes in motivation levels or other
factors (eg, such as lack of skill and experience; in-
ability to tolerate pain29) are unaccounted for and may
significantly but unquantifiably alter the final out-
come. All these reasons are likely to induce at least
as much variability in submaximal exercise perfor-
mance at altitude as that associated with the V

•
O2max

decrement (see Figure 22-1).
One factor that may benefit exercise performance

in some athletic events at altitude is the lessened air
resistance due to the reduced air density. At a typical
exercise training altitude of 2,300 m, the 24% reduc-
tion in air density80 increases the distances for field
events such as the shot put by 6 cm, the hammer throw
by 53 cm, the javelin by 69 cm, and the discus by 162
cm.82 For running very short distances, in which there
is a small aerobic component and high velocity, the
advantage of a reduction in air resistance can result
in faster times at altitude than at sea level.20,22,83 For
longer duration events such as 5-and 10-km runs, the
small advantage afforded by the reduced air resistance
is lessened in comparison with the larger impairment
linked to the V

•
O2max reduction, and run times are

slower than at sea level.22,45,83 But for events such as
speed skating and track cycling, in which velocities
are much greater than in running, the reduced air re-
sistance at altitude allows an improved performance
compared with sea level.

Measuring submaximal exercise performance
using laboratory testing paradigms (such as pedal-
ing a cycle ergometer at a specific exercise intensity
until volitional exhaustion) can reduce or eliminate
variability due to the influences of wind resistance,
skill, and experience (Figure 22-6). However,
interindividual and intraindividual differences in
motivation and pain tolerance still remain, espe-
cially for untrained individuals. One way to mini-
mize such variability is to focus primarily on ath-
letic performances during competitions. By using
athletes, who represent a homogeneous group of
people who are presumed to be healthy and highly

motivated and who are performing at an “all-out”
effort in precisely timed events for which they are
trained, the effects of altitude exposure per se on
submaximal exercise performance should be more
readily apparent.

 As can be seen in Figure 22-7, performances in
maximal-effort events lasting less than 2 minutes
at sea level are not adversely affected by altitude
exposure. For events lasting 2 minutes or longer,
however, the times to complete events (relative to
sea-level performances) tend to increase with eleva-
tion. For events lasting 2 to 5 minutes, a mean per-
formance decrement threshold occurs at approxi-
mately 1,600 m. For events lasting longer than 20
minutes, the threshold occurs at about 600 m to 700

Fig. 22-6. Exercise performance is being measured at a
simulated altitude of 5,500 m. The subject is acclimatized
and performing heavy exercise on a bicycle ergometer
in the Hypobaric Chamber at the US Army Research In-
stitute of Environmental Medicine, Natick, Mass. Note
that the unacclimatized investigators must wear oxygen
masks to enable them to work at this altitude.
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m, an altitude consistent with significant declines
in V

•
O2max for similar groups of highly trained sub-

jects.49,62 These data are consistent with the concept
that the magnitude of impairment will be more
closely linked to the V

•
O2max decrement as the aero-

bic contribution of an event increases towards 100%.
For example, events lasting 2 to 5 minutes at sea
level will average about 2% longer at an altitude of

2,300 m; those lasting 20 to 30 minutes, 7% longer;
and 2 to 3 hours, 17% longer (see Figure 22-2). At
2,300 m elevation, the mean percentage decline in
V
•

O2max would be expected to be approximately
15% for a similar group of highly conditioned ath-
letes (see Figure 22-2). The approach used for this
analysis can also be used for many military appli-
cations. For instance, the average 2-mile physical
fitness test in personnel stationed at Fitzsimons
Army Medical Center, Denver, Colorado (1,609 m),
is increased by 5% (from about 16 to 17 min),4 a
value similar to the decrement that could be esti-
mated from Figure 22-7.

Muscle Strength and Power

Muscle strength and maximal muscle power,
determined by the force generated during a single,
brief (1–5 sec), maximal muscle contraction (static
or dynamic), are generally not adversely affected
by acute or chronic altitude exposure64,76,84–89 as long
as muscle mass is maintained.64,90,91 In addition, al-
pha-motoneuron excitability, nerve- and muscle-
conduction velocity, and neuromuscular transmis-
sion are not impaired, even at altitudes exceeding
4,300 m.76,88,92

Unchanged maximal force and maximal power
generation at altitude may relate to one or both of
the following factors:

• maintenance of low resting levels of me-
tabolites74,91,94 that, if higher (as during more
prolonged exercise), could potentially im-
pair function of the contractile machin-
ery95,96; and

• preservation of normal resting levels of
high energy phosphates sufficient to sup-
port the rate of adenosine 5'-triphosphate
(ATP) turnover (1–2 mmol/s) for brief
maximal muscle performance.97

The amounts of ATP and phosphocreatine available
at rest in humans prior to a maximal contraction
are approximately 26 and 75 mmol/kg dry muscle,
respectively.93,98 Anaerobic performance99,100 during
very intense, maximal or supramaximal exercise
(eg, the Wingate test) lasting 30 seconds are gener-
ally also not adversely affected at altitude.90,101,102 For
anaerobic performance assessments lasting longer
than 30 seconds, there are conflicting results90; mea-
surement inconsistencies of the delay and/or the
rate of rise of V

•
O2 may be contributory factors.74,81

Fig. 22-7. Decrements in athletes’ performance (as func-
tions of event duration and altitude) are seen after 10
days of altitude training. The data are derived from sev-
eral studies that reported results of highly conditioned
athletes, primarily during running and swimming com-
petitions,* who had lived and trained at altitude for at
least 10 days immediately prior to competition. Altitude
exposures lasting longer than 10 days were used in the
analyses to minimize potentially confounding factors
such as mountain sicknesses and nonfamiliarity with the
altitude environment. The four regression lines were cre-
ated using both individual and group data (not shown).
They illustrate how sea-level performance would change
for events lasting from less than 2 minutes to over 2
hours. For example, at 2,000 m altitude, events lasting
less than 5 minutes at sea level would be minimally af-
fected, while events lasting 20 to 30 minutes at sea level
would be impaired by about 5%, and events lasting 2 to
3 hours would be impaired by 10% to 15%. Reproduced
with permission from Fulco CS, Rock PB, Cymerman A.
Maximal and submaximal exercise performance at alti-
tude. Aviat Space Environ Med. 1998;67(8):797.
*Sources for the data points are found in the Attachment
at the end of this chapter.
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PRACTICAL ASPECTS OF HUMAN PERFORMANCE AT ALTITUDE

• a reduction in task intensity, or
• more-frequent rest breaks.

The specific amount and type of modification will
depend on factors such as type of task involved,
task difficulty, elevation, time at altitude, urgency,
weather, terrain, and involved muscle mass (eg, arm
or leg work). At present, precise adjustments for
particular tasks for specific altitudes have not yet
been established. Nevertheless, estimates for addi-
tional time to complete a task during initial altitude
exposure can be made by using information pro-
vided by the National Institute for Occupational
Safety and Health for lifting tasks, predominantly,105

and Figure 22-7 for walking and carrying tasks, pre-
dominantly. Industrial recommendations stipulate
that tasks requiring mostly lifting and less than 30%
of V

•
O2max can be performed for 2 to 8 hours; those

requiring 40% of V
•

O2max, 1 to 2 hours; and those
requiring 50% or more of V

•
O2max, 1 hour or less.105

Using this information, the data in Table 22-1, task
24, for example, can be performed for 2 to 8 hours
at sea level, 1 to 2 hours at 4,000 m, and less than an
hour at 6,000 m. Similarly, data illustrated in Figure
22-7 indicate that if task 35 can be performed for 3
hours at sea level, then 30% additional time (about
an hour) may have to be allowed at 3,000 m.

Time modifications such as those suggested
above are an important means to compensate for
impaired physical performance associated with the
hypoxia of altitude exposure—especially during the
first few days of exposure. With continued expo-
sure, altitude acclimatization occurs and the addi-
tional difficulty of exercising and working are less-
ened. Numerous physiological changes associated
with altitude acclimatization that occur to minimize
the impact of hypoxia are discussed in Young and
Young’s chapter in Human Performance Physiology
and Environmental Medicine at Terrestrial Extremes.75

Briefly, with initial altitude exposure, arterial oxy-
gen content (CaO2) is reduced. But for any speci-
fied submaximal exercise or work intensity, oxygen
transport to the working muscles is maintained
because of a compensatory increase in cardiac out-
put. In other words, cardiac output at a given
submaximal exercise or work intensity will be
greater during initial altitude exposure than at sea
level. For maximal levels of exercise or work, maxi-
mal cardiac output cannot increase to levels greater
than those at sea level, and thus can not compen-

The Effects of Altitude on Military Occupational
Tasks

It is obvious that military personnel are involved
in many physical activities other than athletic events
(eg, running). Such activities are typically work- or
mission-specific and can encompass extremely light
to very demanding efforts that use different muscle
groups for varying periods of time. In a sense, many
work-related tasks have similarities to exercise
performance in terms of effort intensity, volumes
of active muscle involved, and activity duration.
Therefore, the principles discussed above for exer-
cise performance decrements at altitude also relate
to decrements in work performance at altitude.

To illustrate the effects of altitude exposure on work
performance, 42 tasks78 were chosen from both the
Soldier’s Manual of Common Tasks, Skill Level 1, STP
21-1-SMCT, Department of the Army,103 and the Mili-
tary Occupational Specialty (MOS) Physical Task List,
US Army Infantry School, Fort Benning, Georgia104

(Exhibit 22-2 and Figure 22-8). The tasks are ranked
by ascending order of metabolic cost (V

•
O2, in mL/

kg/min) and the percentage of V
•

O2max required to
perform the task as determined at sea level and esti-
mated for 2,000 m to 6,000 m (estimates made from
the database regression line in Figure 22-1) (Table 22-1).
The altitude percentages were calculated with the as-
sumptions that sea-level task intensity and duration
were not altered and additional rest breaks were not
provided. As can be seen, the percentage of V

•
O2max

required to complete each task increases progressively
with ascending elevation. Note that some tasks (tasks
37 to 42) that are of submaximal intensity at sea level
(60% to 70% of V

•
O2max) require nearly maximal or

greater than maximal oxygen uptakes at higher ter-
restrial elevations.

Practical Guidelines for Military Operational
Planning at Altitude

Although Table 22-1 illustrates how an increase
in elevation affects the relative intensity of specific
military tasks, it provides little guidance as to modi-
fications that could be made to increase the prob-
ability of successfully completing the tasks. Such
modifications at altitude, compared with sea level,
would include at least one of the following:

• an increase in task duration,
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EXHIBIT 22-2

FORTY-TWO SOLDIER TASKS, RANKED IN ORDER OF METABOLIC COST

1. Prolonged standing on a circulation control point: Task #3, MOS 95B (Military Police), Skill Level 1-
3. Wearing combat equipment (LBE), stand in place for 15 min.

2. Lift 105-mm projectiles: Task #4, MOS 55D (Missiles/Munitions), Skill level 1-5. Carry 25-kg projec-
tiles 15 m and lift to the height of a 2.5-ton truck (1.32 m), once every 2 min for 15 min.

3. Relocate/establish operations: Task #1, MOS 33S (Intelligence), Skill Level 1-5. Lower/lift 25-kg box
to/from ground level from/to the height of a 2.5-ton truck (1.32 m), once every 4 min for 15 min (lift
every 2 min/lower every 2 min).

4. Perform emergency destruction operations: Task #24, MOS 16B (Air Defense Artillery), Skill level 1-
4. Lift a 6.8-kg shape charge, carry 15 m, and hold at fullest upward reach for 1 min; repeat every 2
min for 15 min.

5. Relocate/establish operations: Task #2, MOS 33S (Intelligence), Skill level 1-5. Lift 22-kg box to the
height of a 2.5-ton truck (1.32 m), once per minute for 15 min.

6. Lift 105-mm projectiles: Task #4, MOS 55D (Missiles/Munitions), Skill level 1-5. Carry 25-kg projec-
tiles 15 m and lift to the height of a 2.5-ton truck (1.32 m), once per minute for 15 min.

7. Receive nonperishable subsistence; unload 40-ft container: Task #1, MOS 76X (Quartermaster), Skill Level
1-4. Lift 18-kg ration containers from the floor to 0.9 m and carry 6.1 m, once per minute for 15 min.

8. Relocate/establish operations: Task #1, MOS 33S (Intelligence), Skill Level 1-5. Lower/lift 25-kg box to/
from ground level from/to a 2.5-ton truck, once per minute for 15 min (lift every 30 s, then lower every 30 s).

9. Load crates of explosives onto truck: Task #5, MOS 12B (Engineers), Skill level 1-2. Lift a 27.3-kg
crate, carry it 4 m, and load it onto a 2.5-ton truck (1.32 m), once per minute for 15 min.

10. Relocate/establish operations: Task #2, MOS 33S (Intelligence), Skill level 1-5. Lift a 22.7-kg box to
the height of a 2.5-ton truck (1.32 m), twice per minute for 15 min.

11. Maintain an M16A1 Rifle: Common Task #071-311-2025. Assemble/disassemble the weapon three to
five times for a duration of 5-10 min.

12. Rig a supply load on a modular platform for airdrop: Task #1, MOS 43E (Quartermaster), Skill Level
1-5. Lift a 36-kg ammunition box from ground level to a height of 0.9 m and carry it 6.1 m, once per
minute for 15 min.

13. Load artillery pieces in preparation for firing: Task #8, MOS 13B (Field Artillery), Skill Level 1-2. Lift
45-kg projectiles to 1.7 m and carry 5 m, twice per minute for 15 min.

14. Move by foot: Task #1, MOS 11B (Infantry), Skill Level 1-5. Wearing combat equipment (LBE) with-
out a rucksack, march on a level, hard surface at 1.11 m/s for 15 min.

15. Lift, carry, and move patients: Task #7, MOS 91B (Medical), Skill Level 1-2. Given a two-person litter
team, move a patient weighing 68 kg over level terrain a distance of 500 m in 20 min.

16. Move by foot: Task #1, MOS 11B (Infantry), Skill Level 1-5. Wearing combat equipment with a 20-kg
rucksack, march on a level, hard surface at 1.11 m/s for 15 min.

17. Lift 105 mm Projectiles: Task #2, MOS 55D (Missile/Munitions), Skill Level 1-5. Lift a 25-kg projectile
and carry it 15 m at the height of 2.5-ton truck (1.32 m), twice per minute for 15 min.

18. Unload and stack paper stock: Task #2, 74B (Administration), Skill Level 1-2. Lift an 18.2-kg box and
carry it 9 m, to include up stairs 2.5 m high, once per minute for 15 min.

19. Move by foot: Task #1, MOS 11B (Infantry), Skill Level 1-5. Wearing combat equipment (LBE) with a
30-kg rucksack, march on a level, hard surface at 1.11 m/s for 15 min.

20. Load artillery pieces in preparation for firing: Task #8, MOS 13B (Field Artillery), Skill Level 1-2. Lift
45-kg projectiles to 1.7 m and carry 5 m, three times per minute for 10 min.

21. Move by foot: Task #1, MOS 11B (Infantry), Skill Level 1-5. Wearing combat equipment (LBE) with-
out a rucksack, march on a level, hard surface at 1.48 m/s for 15 min.

22. Move by foot: Task #1, MOS 11B (Infantry), Skill Level 1-5. Wearing combat equipment (wt: 7 kg), carry-
ing an M-16 (wt: 3 kg), and a 30-kg rucksack, march on a level, hard surface at 1.11 m/s for 15 min.

(Exhibit 22-2 continues)
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sate for the reduced CaO2. The result is a reduction
in maximal oxygen transport and V

•
O2max. With

sustained exposures of 2 to 3 weeks, CaO2 increases

toward sea-level values, owing to both hemocon-
centration due to the loss of plasma volume and an
increase in arterial oxygen saturation (SaO2).

23. Relocate/establish operations: Task #1, MOS 33S (Intelligence), Skill Level 1-5. Lift 22.7-kg box to
height of a 2.5-ton truck (1.32 m), four times per minute for 15 min.

24. Relocate/establish operations: Task #2, MOS 33S (Intelligence), Skill Level 1-5. Lift/lower 22.7-kg
box to/from 2.5-ton truck (1.32 m), 6x/min for 10 min (lift in 10 s; then lower in 10 s).

25. Dig individual defensive position: Task #11, MOS 11 B (Infantry), Skill Level 1-5. Using entrenching
tool, dig a foxhole 0.45-m deep, approximately 0.6 m wide x 1.8 m long, in sandy soil in 30 min.

26. Load artillery pieces in preparation for firing: Task #8, MOS 13B (Field Artillery), Skill Level 1-2. Lift
45-kg projectiles to 1.7 m and carry 5 m, four times per minute for 10 min.

27. Move by foot: Task #1, MOS 11B (Infantry), Skill Level 1-5. Wearing combat equipment with a 20-kg
rucksack, march on a level, hard surface at 1.48 m/s for 15 min.

28. Move by foot: Task #1, MOS 11B (Infantry), Skill Level 1-5. Wearing combat equipment (LBE) with a
20-kg rucksack, march in loose sand at 0.98 m/s for 15 min.

29. Employ hand grenades: Common Task #071-325-4407. Using dummy grenades, engage a 5-m–radius
target, 40 m from a covered position, three times per minute for 10 min.

30. Move by foot: Task #1, MOS 11B (Infantry), Skill Level 1-5. Wearing combat equipment (LBE) with
30-kg rucksack, march on a level, hard surface at 1.48 m/s for 15 min.

31. Lift 105-mm projectiles: Task #4, MOS 55D (Missiles/Munitions), Skill Level 1-5. Lift a 25-kg projec-
tile and carry it 15 m to the height of a 2.5-ton truck (1.32 m), four times per minute for 15 min.

32. Carry TOW equipment: Task #1, MOS 11H (Infantry), Skill level 1-4. Wearing combat equipment
(LBE), carry a 24.5-kg traversing unit up a grade (10%), at 0.89 m/s for 15 min.

33. Lift, carry, and move patients: Task #7, MOS 91B (Medical), Skill Level 1-2. Given a four-person litter
team, move a patient weighing 81.8 kg over level terrain a distance of 1,000 m in 30 min.

34. Lift, carry, and move patients: Task #7, MOS 91B (Medical), Skill Level 1-2. Given a two-person litter
team, move a patient weighing 68.2 kg, 100 m every 90 s for 10 min.

35. Move by foot: Task #1, MOS 11B (Infantry), Skill Level 1-5. Wearing combat equipment (wt: 7 kg) and
carrying a weapon (wt: 3 kg) with a 30-kg rucksack, march on a level, hard surface at 1.48 m/s for 15 min.

36. Lift, carry, and move patients: Task #7, MOS 91B (Medical), Skill Level 1-2. Given a two-person litter
team, carry a patient weighing 68.2 kg for 27.5 m, lift to the height of a 2.5-ton truck (1.32 m), then
return 27.5-m to retrieve the next patient; complete 10 cycles in 10 min.

37. Move over, through, and around obstacles: Common Task #071 326-0503. Wearing combat equip-
ment (LBE), traverse a 150-m obstacle course in 2 min at a constant rate; complete 5 cycles in 10 min.

38. Move by foot: Task #1, MOS 11B (Infantry), Skill Level 1-5. Wearing combat equipment (LBE) with a
20-kg rucksack, march in sand at 1.31 m/s for 15 min.

39. Move under direct fire (rush and crawl): Common Task #071-326 0502. Wearing combat equipment
(LBE) and carrying a weapon, conduct high crawl and rush maneuvers over wooded terrain; com-
plete 136.5-m course in 90 s; repeat five times.

40. Move by foot: Task #1, MOS 11B (Infantry), Skill Level 1-5. Wearing combat equipment (LBE) with-
out a rucksack, move on a level, hard surface at 2.24 m/s for 10 min.

41. Carry TOW equipment: Task #1, MOS 11B (Infantry), Skill Level 1-4. Wearing full combat equip-
ment, carry a 24.5-kg traversing unit up a grade (20%), at 0.89 m/s for 15 min.

42. Carry an M5 smoke pot in preparation of a smoke line: Task #1, MOS 54C (Chemical), Skill Level 1-2. Lift
two 13.6 kg smoke pots, carry 30 m, and then lower the smoke pots, four times per minute for 10 min.

LBE: load-bearing equipment
TOW: tube-launched, optically tracked, wire-guided (missile system)
Adapted from Patton JF, Murphy MM, Bidwell TR, Mello RP, Harp ME. Metabolic Cost of Military Physical Tasks in MOPP 0 and
MOPP 4. Natick, Mass: US Army Research Institute of Environmental Medicine; 1996. USARIEM Technical Report T95-9: 5–9.

Exhibit 22-2 continued
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As a consequence of the decreased plasma vol-
ume, however, stroke volume and cardiac output
are both reduced. During submaximal levels of ex-
ercise or work, the restored CaO2 compensates for
the reduced cardiac output such that oxygen trans-
port to the working muscles is maintained. But dur-
ing maximal levels of exercise or work, the restored
CaO2 cannot compensate for the altitude-induced
decline in maximal cardiac output, and maximal
oxygen transport and V

•
O2max do not improve.43,106

Additionally, many other ventilatory, hematologi-
cal, and metabolic adaptations may aid oxygen trans-
port and improve exercise capabilities or military task
performance. Some of these may include increases in
2,3-diphosphoglycerate (2,3-DPG) concentration,54

muscle capillary proliferation,107 oxidative enzymes,108

myoglobin,108 usage of free fatty acids,109 buffering
capacity,107 oxygen deficit,107 and decreased ammonia
accumulation66 and dependence on muscle glyco-
gen.109 These hypoxia-produced changes in oxygen
delivery and metabolic profile have been suggested
by many within the scientific and athletic communi-
ties as a potential means of inducing an additive or
potentiating effect on exercise performance—not only
at altitude but also on return to sea level. Before we
review and summarize the results of such informa-
tion, it is important that we describe exercise training
fundamentals and experimental study considerations.
Doing so will allow a more accurate appraisal of the
postulate that exercise training or living, or both, un-
der hypoxic conditions enhances V

•
O2max and other

measures of exercise performance, compared with
both living and training at sea level.

Training Strategies for Improving Exercise
Performance at Altitude

A plethora of information exists about how vari-
ous combinations of exercise stimuli—intensity,
duration, and frequency—can improve both V

•
O2max

and submaximal exercise performance at sea
level.110–114 In general, that information suggests that
the higher the exercise intensity, the longer the exer-
cise duration, the more frequent the training sessions,
and the lower the initial fitness level, the greater
will be the performance improvements.114,115 The
exercise training stimuli required to continue produc-
ing salutary effects increases as physical condition-
ing improves.40,114,115 Therefore, the training stimuli
for newly conditioned or highly conditioned indi-
viduals must necessarily be greater than for those
less conditioned. For this reason, the same absolute
training stimuli should not be used for all partici-
pants in an exercise training program but should
be adjusted to accommodate each individual’s cur-
rent level of conditioning. Not maintaining exercise
intensity, duration, and/or frequency of training
can result in declines in V

•
O2max and submaximal

exercise performance.111–114 Exercise training intensity,
however, appears to be the principal stimulus.111

As stated above in the discussion of submaximal
exercise, exercise at altitude, performed at the same
power output as at sea level, represents a higher
relative exercise intensity. During training at alti-
tude, a higher exercise intensity may not be desir-
able because of issues such as not being able to sus-
tain a given task for a required duration. Therefore,
to maintain a comparable relative exercise intensity
at altitude as at sea level, power outputs must be
reduced during exercise training at altitude. How-
ever, reducing power output may result in relative
deconditioning23,36 that may offset any potential al-
titude-induced physiological benefits. Whether an
altitude exercise training regimen will be success-
ful in improving exercise performance more at alti-
tude than at sea level would seem, then, to be the
net result of a complex interaction of conditioning
level, training stimuli, deconditioning, altitude ac-
climatization, and level of hypoxia.

For research purposes, it is also important to note
that unless a matched group of individuals (ie, con-
trol group) train similarly while residing at sea level,
it is difficult to assess the relative contributions of
exercise training or detraining from the effects of
hypoxia or altitude acclimatization. In addition,
research studies may report only the assessment of
V
•

O2max in evaluating exercise training or hypoxia-
induced results. If a subject’s V

•
O2max does not im-

Fig. 22-8. Lift, carry, and move patients (MOS 91B, task
33; see Exhibit 22-2). A four-person litter team is moving
an 81.8-kg patient over level terrain at a rate of 305 m/
30 min. The energy cost of this task would require ap-
proximately 46%, 53%, and 66% of V

•
O2max at sea level,

3,000 m, and 5,000 m, respectively.
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prove, some of these studies may conclude that the
altitude exposure and/or the exercise training regi-

men had no effect. This interpretation is question-
able because significant improvements may occur

TABLE 22-1

PERCENTAGE OF MAXIMAL AEROBIC POWER FOR 42 MILITARY OCCUPATIONAL TASKS AT
INCREASING ALTITUDES

%V
•

O2max

V
•

O2 2,000 m 3,000 m 4,000 m 5,000 m 6,000 m
Task (mL/kg/min) SL1 altitude2 altitude2 altitude2 altitude2 altitude2

1 4.9 9 10 11 12 13 16
2 6.7 13 14 15 16 18 22
3 6.7 12 14 15 16 18 22
4 7.4 14 15 16 18 20 24
5 7.5 15 15 17 18 21 24
6 8.5 16 17 19 21 23 27
7 9.1 18 19 20 22 25 29
8 9.5 18 19 21 23 26 31
9 9.6 18 20 21 23 26 31

10 9.8 19 20 22 24 27 32
11 11.0 20 22 24 27 30 35
12 11.0 21 22 24 27 30 35
13 11.0 21 22 24 27 30 35
14 11.8 21 24 26 29 33 38
15 12.0 22 24 27 29 33 39
16 12.2 24 25 27 30 34 39
17 12.4 23 25 28 30 34 40
18 13.7 25 28 31 33 38 44
19 13.9 27 28 31 34 38 45
20 14.0 27 29 31 34 39 45
21 14.4 28 29 32 35 40 46
22 15.2 29 31 34 37 42 49
23 15.4 29 31 34 37 42 50
24 16.5 30 34 37 40 45 53
25 17.1 33 35 38 42 47 55
26 17.4 34 35 39 42 48 56
27 18.1 33 37 40 44 50 58
28 19.1 37 39 43 46 53 62
29 19.7 36 40 44 48 54 64
30 21.1 41 43 47 51 58 68
31 22.9 45 47 51 56 63 74
32 23.2 44 47 52 56 64 75
33 23.9 46 49 53 58 66 77
34 24.6 47 50 55 60 68 79
35 25.7 48 52 57 63 71 83
36 27.0 52 55 60 66 74 87
37 29.5 58 60 66 72 81 95
38 29.7 59 60 66 72 82 96
39 30.3 59 62 67 74 83 98
40 33.5 62 68 75 82 92 108
41 39.0 75 79 87 95 107 126
42 41.4 76 84 92 101 114 134

SL: sea level
Data sources: (1) Patton JF, Murphy MM, Bidwell TR, Mello RP, Harp ME. Metabolic Cost of Military Physical Tasks in MOPP 0 and
MOPP 4. Natick, Mass: US Army Research Institute of Environmental Medicine; 1996. USARIEM Technical Report T95-9. (2) Esti-
mated from the database regression line in Figure 22-1.
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in the response to standard submaximal endurance
tests and during athletic performances with or with-
out an increase in V

•
O2max.33,40,47,114,116,117

 Given the above considerations, findings based
on appropriately controlled studies30,45,118 support a
beneficial effect of altitude training for altitude, but
not subsequent sea-level performances (to be dis-
cussed below). In contrast, many anecdotal reports
based on the practical experiences of coaches and
athletes indicate that altitude exercise training—
especially for elite endurance athletes—is not only
beneficial but may be required for optimal perfor-
mance at sea level.47,119–123 This belief is so strong that
it has stimulated a proliferation of moderate alti-
tude (1,500–2,800 m) training sites and facilities
around the world.119,121

The reasons for the dissimilar conclusions be-
tween the research and athletic communities with
regard to the efficacy of altitude training for subse-
quent sea-level exercise performance are not readily
apparent. Perhaps laboratory studies that assess
changes in exercise performance do not provide an
adequate basis for the assessment of specific ath-
letes in competitive athletic events.19,28,79,80,124 Exer-
cise performance based solely on changes on labo-
ratory estimates of V

•
O2max, for example, may miss

improvements in anaerobic capacity107 that could
result in improved track and field performances.
Also, the level of athletic skill and judgment neces-
sary for athletic success may not be adequately ac-
counted for in the laboratory.29 Or perhaps altitude
training may be beneficial for some athletes but not
others.26,42,124 If so, then small individual improve-
ments in athletic performance—enough to achieve
competitive success—may be undetectable by the
usual scientific statistical analyses that tend to as-
sess only overall group changes.125 It may also be
that better results could result from

• a strong commitment to train harder at al-
titude than at sea level,

• training with the best athletes and coaches
available,

• an athletic event’s being perceived as easier
on return to sea level, and

• the belief of athletes and coaches that alti-
tude (or hypoxia) exercise training does pro-
vide an advantage.

Given these considerations, the following four
sections assess the efficacy of residence or exercise
training, or both, at altitude or sea level for the en-
hancement of exercise performance. In each section,
a table presents studies from the literature that test

the hypothesis that training or living or both under
hypoxic conditions enhances V

•
O2max, submaximal

endurance exercise performance, and other mea-
sures of exercise performance compared to both liv-
ing and training at sea level. Taken together, these
studies also provide an appreciation of the complex
interaction of the numerous factors that contribute
to the lack of consensus about the efficacy of using
hypoxia as a exercise performance enhancing aid.
The studies selected represent a large sampling of
the available exercise training studies that were
conducted at different altitudes (1,300 m to 5,700
m), different training and residence durations (12
d–19 wk), and using civilian and military volun-
teer subjects with a range of fitness levels (mean
sea-level V

•
O2max values ranging from 37 to 74 mL/

kg/min).

Hypoxic Exercise Training During Altitude
Acclimatization

Table 22-2 presents studies that evaluated exer-
cise performance of subjects who trained while re-
siding at altitude. Of the 13 studies that lack con-
trol groups, seven reported a significant increase
in V

•
O2max either at altitude or on return to sea level.

Of the four studies that included an exercise con-
trol group, none reported an improvement in
V
•

O2max—during or after altitude training—that
could not be accounted for by the sea-level control
group. The reason for the difference in findings be-
tween the studies with and without control groups
cannot be attributed to differences in training alti-
tudes, training durations, or subject fitness levels.
Collectively, the results of these studies indicate that
improvements in V

•
O2max may occur during train-

ing while residing at altitude and that the higher
V
•

O2max may be retained on return to sea level.
However, the improvement in V

•
O2max likely results

from exercise training alone and not to physiologi-
cal changes associated with altitude acclimatization.

Conversely, maximal effort exercise performance
at altitude for events lasting longer than 2 minutes
can improve during altitude acclimatization inde-
pendently of an increase in either training inten-
sity or V

•
O2max. Figure 22-9 shows data from elite

athletes who were highly trained prior to altitude
exposure and whose race times were recorded in
the conduct of their primary event at the beginning
and the end of their altitude exposure. Because of
their high fitness levels and relatively short evalu-
ation–reevaluation intervals, the improvement in
athletic performance at altitude was not likely due
to an increase in training. This conclusion is con-
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sistent with other controlled studies that show that
altitude exposure with only maintenance training
improves endurance performance, with116 or with-
out33 an increase in V

•
O2max.

Studies that have specifically assessed whether
altitude exercise training during residence at alti-
tude improves subsequent sea-level V

•
O2max and

maximal effort endurance exercise performance in
the same subjects have produced conflicting or in-
conclusive results, however. On return to sea level,
either both V

•
O2max and athletic performance did

not improve,27,45 or both V
•

O2max and athletic per-
formance improved,19,47 or V

•
O2max did not improve

but athletic performance did.107,126 The reason or
reasons for these conflicting results is not clear, but
it probably is not related to differences in the level
of prealtitude exposure fitness levels because the

subjects in these studies were all highly conditioned.
Differences in results may be related to a complex
interaction of factors that include interstudy differ-
ences in exercise intensity, altitude duration, or
types of exercise performance evaluations used, in
any combination, and also to interindividual dif-
ferences in training responsiveness. In addition, it
should be noted that a small, statistically nonsig-
nificant, training-induced improvement in mean
V
•

O2max (often reported as “no change”) can result
in a significant increase in submaximal exercise
performance. For example, a 1% to 3% rise in
V
•

O2max results in a 12% to 45% improvement in
endurance time to exhaustion.33,48,117 These studies
emphasize the importance of (1) not using V

•
O2max

as the sole criteria to judge the efficacy of an alti-
tude training program, and (2) reporting individual
rather than only group data for both V

•
O2max and

other measures of submaximal exercise perfor-
mance, as some individuals may benefit from alti-
tude training while others may not.

Hypoxic Exercise Training Without Altitude
Residence

Short-duration hypobaric chamber studies or
studies utilizing hypoxic gas mixtures during exer-
cise training address the effects of training under
repeated acute hypoxic conditions without inducing
some of the physiological changes associated with
altitude acclimatization such as increased hemoglo-
bin and hematocrit concentrations,56,127,128 and a re-
duction in maximal cardiac output.43,75 Submaximal
endurance exercise training during repeated short-
duration hypoxic exposures may also enhance pe-
ripheral changes such muscle fiber size,129 capillary
density,129,130 myoglobin concentration,108 muscle
oxidative capacity,108 glycolytic activity,108 and in-
terfibrillar mitochondrial volume density129—but it
has been difficult to determine from the reported
data if the magnitude of these potentially salutary
changes are greater during hypoxia training than
during similar sea-level training.

The collective findings of the studies in which
subjects trained daily for short periods at altitude
or in hypoxia, but lived at sea level, are presented
in Table 22-3. Improvements in V

•
O2max were re-

ported for some studies during testing in hy-
poxia56,128–132 or normoxia,66,128,131,132 whether or not
control groups were used. In another study,130 work
capacity (ie, the total amount of aerobic work per-
formed during an exhaustive incremental test) but
not V

•
O2max improved more for the experimental

group than for the control group—but in hypoxia

Fig. 22-9. The effect of training at altitude on performance
at altitude (2,240 m to 2,800 m). The X axis is the event
duration at sea level and the Y axis is the percentage
change from the sea-level performance. Data* are from
eight of the studies used to develop Figure 22-5. The data
used in the graph above are for the same individuals and
events but for two different altitude durations: acute ex-
posures (<  5 d, closed circles) and chronic exposures (>
10 days, open circles). The regression lines depict the
acute (solid line) and chronic (dashed line) exposure.
Reprinted with permission from Fulco CS, Rock PB,
Cymerman A. Maximal and submaximal exercise perfor-
mance at altitude. Aviat Space Environ Med. 1998;67(8):798.
*Sources for the data points are found in the Attachment
at the end of this chapter.
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only. It is interesting that most studies of this design
report results that are consistent with an additive
or potentiating role of hypoxic exercise training for
subsequent hypoxic or normoxic performance
evaluations.56,128–131

Why living at sea level and training at altitude
may be more beneficial for improving exercise per-
formance than both living and training at altitude
is not well understood. Possible differences in suc-
cess rates between these two experimental ap-
proaches do not seem to be related to differences in
absolute exercise intensity, training altitude, train-
ing program duration, subject fitness levels, and
peripheral muscle changes. The only consistent dif-
ferences are increases in hematocrit and hemoglo-
bin in subjects who both trained and resided at al-
titude, compared with studies in which subjects
trained in hypoxia but lived at sea level. Of course,
during a typical 2- to 5-week period of living and
training at altitude (a typical length of time for most
of these studies), increases in hematocrit and he-
moglobin concentrations primarily reflect hemocon-
centration that, as was mentioned above, is due to
decreases in plasma and blood volume—changes
that may attenuate the effects of hypoxia per se43,75

but may not provide an additional benefit for alti-
tude or sea-level physical performance.

When results of the physiological and exercise
performance changes of the two experimental ap-
proaches are compared, the data suggest that, for
both sea-level and altitude exercise performance,
training but not living under hypoxic conditions
may be more beneficial than training and living at
altitude, and that the benefit may be related to a
maintained blood volume. It is unfortunate that
studies in which subjects live at sea level and train
under hypoxic conditions have not typically re-
ported timed track trials and other athletic-event
evaluations. Doing so would likely allow a more
accurate appraisal of the potential benefits of train-
ing, but not living, in hypoxia. Thus, the limited
data from studies using widely differing experimen-
tal designs preclude forming firm conclusions re-
garding the efficacy of periodic hypoxic training for
subsequent sea-level exercise performance.

Normoxic Exercise Training During Altitude
Acclimatization

It is documented that inability to maintain exer-
cise intensity during exercise training at sea level
can result in a decline in V

•
O2max.111 It is possible,

therefore, that the necessary reduction in exercise

intensity while training at altitude may lead to
“relative deconditioning” and offset potential ben-
eficial changes resulting from altitude acclimatiza-
tion.26 Living at altitude but training at a lower al-
titude (“living high and training low”) theoretically
allows both the advantageous changes of acclima-
tization to develop and the opportunity to train
without reducing exercise intensity.

Using this approach, Levine and colleagues133

trained nine highly conditioned runners (V
•

O2max
[sea level] = 64.9 mL/kg/min) for 4 weeks at 1,300
m. All subjects trained together at the same exer-
cise intensity. Three of the subjects lived at 1,300 m
(the “sea-level” group) and six lived at 2,500 m (the
“altitude” group). Before training, there were no
differences between groups in V

•
O2max, 5-km run

time, or blood volume. For the sea-level group, there
were no significant changes in any of the measures
after training. For the altitude group, however, both
V
•

O2max and blood volume increased and the time
to run 5 km decreased (Table 22-4). The investiga-
tors concluded that altitude acclimatization with
sea-level training improved exercise performance
at sea level.

Because of these findings, Levine and Stray-
Gundersen36 and Levine, Roach, and Houston37 hy-
pothesized 1 year later that altitude acclimatization
rather than hypoxic exercise per se was the key to
altitude training because the natural form of “blood
doping” (increased blood volume and hemoglobin)
enhanced oxygen transport. In contrast, as dis-
cussed above, hypoxic exercise training has been
reported to increase V

•
O2max without inducing

changes in hemoglobin concentration or blood vol-
ume.56,133 Perhaps hypoxic exercise training in-
creases the “training effect,” as evidenced by greater
increase in aerobic enzyme activities and other pe-
ripheral changes.108,129,130 Additional studies with the
experimental design of “living high and training
low” are still needed to confirm or refute these re-
sults.

Normoxic and Hypoxic Exercise Training After
Altitude Acclimatization

The studies reviewed above were conducted us-
ing sea-level residents who lived or trained, or both,
under hypoxic conditions. Some19,24,25,47,56,128,131,133,134

reported that hypoxic exercise training enhances
maximal performance compared to normoxic training
on return to sea level, while others27–30,45,52,107,126,129,130,132

report no such enhancement. The discrepancies
have been ascribed to135
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1. differences in the level and duration of al-
titude exposure

2. differences in the degree of prealtitude ex-
posure fitness levels,

3. differences in the interindividual rate of
early altitude acclimatization, and

4. variable intensity training programs be-
tween or within studies.

Some altitude exercise training studies were con-
ducted during the early altitude exposure period
and ended long before altitude acclimatization was
complete. Other altitude exercise training studies
were accomplished during repeated acute hypoxic
exposures where some indices of acclimatization
were purposefully avoided. Having individuals
train at altitude after “complete” acclimatization
should both minimize the confounding variability
due to changes associated with altitude acclimati-
zation and allow assessment of hypoxic exercise
training only.

To test this hypothesis, Favier and colleagues135

trained 30 native-born, high-altitude residents, (sea-
level V

•
O2max ~ 42 mL/kg/min), at 3,600 m on a

cycle ergometer 30 min/d, five times per week, for
6 weeks (Table 22-5). Subjects were randomly as-
signed to one of three groups of ten. One group
trained at altitude at 70% of V

•
O2max breathing am-

bient air (the control group). The other two groups
trained at altitude but inhaled a normoxic gas mix-

ture (FIO2 = 0.314 at 500 mmHg, sea-level equiva-
lent) and exercised at the same relative work load
(70% of normoxic V

•
O2max) or at the same absolute

work load (70% of hypoxic V
•

O2max) as the control
group. The normoxic training groups were, in es-
sence, living at high altitude and training at low.
As the fitness levels of the subjects improved, the
work loads were increased to maintain exercise in-
tensities at the desired levels. All three groups dem-
onstrated an improvement in V

•
O2max in response

to training (the magnitude of which was similar to
that of the same conditioning program used for an
earlier sea-level training study conducted by the re-
search team).136 The results suggest that the docu-
mented increase in hemoglobin concentration in-
duced by altitude acclimatization does not provide
additional benefits in terms of increasing V

•
O2max

with training. The results also indicate that the com-
bination of altitude acclimatization and oxygen
supplementation during exercise training (to allow
training at an increased power output and training
intensity) does not produce an increase in V

•
O2max

greater than training in hypoxia. These results do
not support the belief that the potential beneficial
effect of hypoxia is lessened by the inability to exer-
cise at a high intensity at altitude.28,37,42 The reason
or reasons for the diverging results and conclusions
of this study135 and those of Levine and colleagues133

are not readily apparent. More studies with these
experimental approaches are warranted.

SUMMARY

The ability to perform muscular exercise is usu-
ally evaluated by measuring maximal aerobic
power (V

•
O2max) during increasingly severe exer-

cise that leads to exhaustion within minutes. In as-
cending to altitude, an individual is exposed to a
progressive decrease in atmospheric pressure that
is associated with reductions in inspired, alveolar,
and arterial oxygen pressures. As a consequence,
V
•

O2max also declines. A comprehensive review of
the literature indicates that the minimal elevation
at which a decrease in V

•
O2max is detectable is ap-

proximately 580 m. It is possible that the minimal
altitude is even lower, especially for highly condi-
tioned individuals. Sixteen experimental and physi-
ological factors have been implicated in the wide
variation in percentage V

•
O2max decrement at altitudes

from 580 m to 6,000 m. Fitness level, preexposure el-
evation, gender, and duration of exposure were all
qualitatively assessed to determine their contribu-
tion to the overall variability. Of these, fitness-level

differences caused the most variability and gender
differences contributed the least.

Submaximal oxygen uptake is similar for a given
activity at sea level and at altitude. But because
V
•

O2max declines, the relative exercise intensity is
increased and therefore submaximal exercise per-
formance is adversely affected. To maintain the
same level of perceived difficulty at altitude for
training or working on civilian or military tasks,
the exercise or work loads must necessarily be re-
duced. Long-duration activities will be impaired
more than shorter-duration activities at a given al-
titude. Muscle strength, maximal muscle power,
and, likely, anaerobic performance are not affected
at altitude as long as muscle mass is maintained.
Physical performance may be improved at altitude
compared with sea level in activities that have a
minimal aerobic component and can be performed
at high velocity (eg, sprinting).

Altitude acclimatization is associated with a
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multitude of ventilatory, hematological, and meta-
bolic adaptations that have been thought to induce
a beneficial effect on exercise performance. Training
or living, or both, at altitude can improve altitude
exercise performance in athletic events or military
activities lasting longer than about 2 minutes. In
contrast, findings based on controlled studies do
not support a beneficial effect of altitude training
on subsequent sea-level performance. Any poten-
tial benefit induced by altitude acclimatization for
subsequent sea-level performance may be offset by
the inability to maintain exercise intensity. Living

at altitude but training at a lower altitude permits
the theoretical advantage of both acclimatization
and training without reducing exercise intensity.
This paradigm appears promising but is still open
to question, since native-born, high-altitude resi-
dents who trained at altitude with oxygen supple-
mentation (in essence, living high but training low)
did not improve V

•
O2max more than native-born,

high-altitude residents who trained at altitude with-
out supplementation. More research is clearly war-
ranted to determine the most advantageous strategy,
if any, for improving sea-level exercise performance.
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Schweizerische Zeitschrift Fur Sportmedizin. 1966;14:106–116. (2) Faulkner JA, Daniels JT, Balke B. Effects of training at
moderate altitude on physical performance capacity. J Appl Physiol. 1967;23:85–89. (3) Reeves JT, Jokl P, Cohn JE.
Performance of Olympic Runners at Altitudes of 7,350 and 5,350 feet. In: Jokl E; Jokl P, eds. Exercise and Altitude. New
York, NY: Karger; 1968: 49–54. (4) Buskirk ER, Kollias J, Akers RF, Prokop EK, Reategui P. Maximal performance at
altitude and on return from altitude in conditioned runners. J Appl Physiol. 1967;23:259–266. (5) Daniels J, Oldridge
N. The effects of alternate exposure to altitude and sea level on world-class middle-distance runners. Med Sci Sports.
1970;2:107–112. (6) Pugh LGCE. Athletes at altitude. J Physiol (Lond). 1967;192:619–646. (7) Daniels J. Altitude and
athletic training and performance. Am J Sports Med. 1979;7:371–373. (8) Balke B, Nagle FJ, Daniels J. Altitude and
maximal performance in work and sport activity. JAMA. 1965;194:646–649. (9) Counsilman JE. The effect of altitude
upon swimming performance. In: Goddard RF, ed. The Effects of Altitude on Physical Performance. Albuquerque, NM:



Medical Aspects of Harsh Environments, Volume 2

724
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